
© 2014 Carnegie Mellon University

Collaborative Autonomy with

Group Autonomy for Mobile

Systems (GAMS)

Presenter: James Edmondson
 (jredmondson@sei.cmu.edu)

Date: August 19, 2014

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
19 AUG 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Collaborative Autonomy with Group Autonomy for Mobile Systems
(GAMS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2
James Edmondson

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001427

3
James Edmondson

© 2014 Carnegie Mellon University

Problems facing group autonomy

• Autonomy focus is on single unit control

• Focus is on centralized controllers (prone to

failure/attack)

• Autonomy frameworks tend to be targeted at

homogeneous platforms and algorithms

• Blocking communications are prone to

faults/attacks/outages/loss-of-control

• GPS is highly inaccurate for precise maneuvers

• Lack of standardization for autonomous

collaboration

Intro MADARA GAMS Conclusion

4
James Edmondson

© 2014 Carnegie Mellon University

Our Approach to Group

Autonomy

1. Create a portable, open-sourced,

decentralized operating environment for

autonomous control and feedback. Focus

on scalability, performance and

extensibility

2. Integrate the operating environment into

unmanned autonomous systems (UAS),

platforms, smartphones, tablets, and other

devices. Focus on portability.

3. Design algorithms and tools to perform

mission-oriented tasks like area coverage

and network bridging between squads

4. Design user interfaces to help single

human operators control and understand a

swarm of UAS, devices, and sensors

(human-on-the-loop autonomy)

Intro MADARA GAMS Conclusion

5
James Edmondson

© 2014 Carnegie Mellon University

FY 2015 Technologies/Platforms

We are investigating several platforms and

collaborations this year, including:

• UAVs (Parrot and 3D Robotics)

• Autonomous Boats (Paul Scerri—CMU)

• Micro-UAVs (Vijay Kumar—UPenn GRASP)

• Flood sensors (Anthony Rowe, Huntingdon

County EMS)

• Throwables (Bounce Imaging),

Smartphones, Tablets (Android)

• High precision and gps-denied positioning

Intro MADARA GAMS Conclusion

6
James Edmondson

© 2014 Carnegie Mellon University

Principles of our open-sourced middleware (MADARA and

GAMS)

1. Be useful to application developers

2. Enable distributed, decentralized artificial intelligence

3. Be fast, small, and capable

4. Be portable to as many platforms relevant to UAS as possible

5. Be extensible to facilitate new transports, linking with external libraries,

security, assurance, and consistency

6. Provide extensive documentation

Intro MADARA GAMS Conclusion

7
James Edmondson

© 2014 Carnegie Mellon University

Key MADARA Features (2009-present)

• Allows developers to write both state-based and event-based programs

(or combinations of both) for distributed artificial intelligence

• Programs can react to receive, send, or rebroadcast events

• Programs can have deadline-enforced periodic executions, wait for

certain state-based conditions to come true, or execute efficient,

dynamic actions in KaRL (Knowledge and Reasoning Language)

• Allows developers to script (KaRL) or utilize object-oriented

programming to codify their algorithms and applications

• Supports C++, Java, Python, ARM, Intel, Windows, Linux, Android, iOS

• Supports IP multicast, broadcast, unicast, OMG DDS transports

• Enforces consistency of updates through Lamport clocks, priorities

• Extensible transport layer, filtering system, and callbacks

• Extensive documentation (guides, tutorials, doxygen)

Intro MADARA GAMS Conclusion

8
James Edmondson

© 2014 Carnegie Mellon University

MADARA Architecture

More information, tutorials, and documentation at http://madara.googlecode.com

User

Code

Knowledge

Base

Logger

Native User

Functions

Transport

Filters

Bandwidth

Monitor

Packet

Scheduler

Network

User OS/file

KaRL Transport

Legend

System

Calls

OS/file

Intro MADARA GAMS Conclusion

9
James Edmondson

© 2014 Carnegie Mellon University

GAMS Architecture (FY 2014)

1. Built directly on top of MADARA

2. Utilizes MAPE loop (IBM autonomy construct)

3. Provides extensible platform, sensor, and algorithm support

4. Uses new MADARA feature called containers, which support object-oriented

programming of the Knowledge Base

Intro MADARA GAMS Conclusion

10
James Edmondson

© 2014 Carnegie Mellon University

GAMS Architecture (FY 2014)

Key points:

• During the MAPE loop, the context is locked from external updates

• At the end of the MAPE loop, all global variable changes are aggregated

together and sent to other UAS participating in the mission

Intro MADARA GAMS Conclusion

11
James Edmondson

© 2014 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

The Monitor, Plan, and Execute phases are pretty straight-forward

Intro MADARA GAMS Conclusion

12
James Edmondson

© 2014 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

During the analyze phase:

1. The platform analyzes its state and informs the rest of the GAMS system via

MADARA variables

2. The system analyzes the platform and environment for algorithm changes

3. The algorithm then analyzes its state and sets appropriate MADARA variables.

Intro MADARA GAMS Conclusion

13
James Edmondson

© 2014 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

About system_analyze ():

1. The platform can inform the control loop of gps-spoofing, if it has capabilities

2. Check_gps () is also intended to implement gps-spoof checking in software

3. Environmental or platform characteristics can result in changes to the platform

(e.g., an arm is damaged) or algorithm (e.g., the UAS should return home)

Intro MADARA GAMS Conclusion

14
James Edmondson

© 2014 Carnegie Mellon University

How to use GAMS with new platforms and algorithms

1. Extend the platform base class

• Implement move (), land (), takeoff (), or other functions

• Implement sense ()

• Implement analyze ()

2. Extend the algorithm base class

• Implement analyze ()

• Implement plan ()

• Implement execute ()

3. Extend the base controller class (optional)

• Override MAPE methods

4. Use the parameterized Mape_Loop class (optional)

• Use the define_monitor, define_analyze, etc. methods with MADARA

functions

Intro MADARA GAMS Conclusion

15
James Edmondson

© 2014 Carnegie Mellon University

What exactly are we solving?

1. MADARA is a bit expansive in its capabilities and developers can find

themselves pulled in many different directions when thinking of autonomy to

implement. GAMS provides an interface for algorithms and platforms

to be added and utilized within a wireless environment

2. GAMS provides mechanisms for tracking platform and algorithm

states and characteristics, such as detection of GPS-spoofing,

blocked/deadlocked conditions within algorithms, low battery, degraded

sensors, etc.

3. While MADARA may support any type of distributed artificial intelligence

paradigm, GAMS provides a stable, consistent framework for group

autonomous behaviors and may prove beneficial to standardization

efforts for group autonomy

Intro MADARA GAMS Conclusion

16
James Edmondson

© 2014 Carnegie Mellon University

Future Work

Though we have great partners and stakeholders, we do have hardware and other

research that we would love to focus on in FY 2015 and 2016

• Other gps-denied localization systems

• Vision (have discussed aspects of this with Dr. Davide Scaramuzza at

University of Zurich and Dr. Marios Saviddes of CMU)

• Acoustic (Anthony Rowe of CMU)

• Accent/Augmentation algorithms

• Focus on control loops and structures that allow for secondary algorithms to run

in parallel to accomplish autonomous functions without interfering with primary

algorithms

• Formal verification of complex, asynchronous distributed applications and

algorithms

Intro MADARA GAMS Conclusion

17
James Edmondson

© 2014 Carnegie Mellon University

Closing remarks

In this talk, we’ve discussed

• A distributed reasoning engine called MADARA that provides portable, fast

reasoning services for distributed artificial intelligence

• An extensible framework called GAMS for distributed algorithms and platforms

that enables Monitor-Analyze-Plan-Execute-based distributed autonomous systems

• A model-checked code compiler and prototype generator called MCDA for

distributed applications

Intro MADARA GAMS Conclusion

18
James Edmondson

© 2014 Carnegie Mellon University

FY 2014 Open Source Release

The algorithms, tools, and middleware created at

SEI are released via BSD-style licenses through

the following projects:

• Multi-Agent Distributed Adaptive Resource

Allocation (MADARA) for the distributed OS

layer: http://madara.googlecode.com

• Group Autonomy for Mobile Systems (GAMS)

for the algorithms and UIs: http://gams-

cmu.googlecode.com

• Model Checking for Distributed Applications

(MCDA) http://mcda.googlecode.com

• Drone-RK for the UAV device drivers:

http://www.drone-rk.org

• Contact: jredmondson@sei.cmu.edu

SEI Project Members

James Edmondson

Sagar Chaki

Sebastian Echeverria

Gene Cahill

CMU Project Members

Anthony Rowe

Oliver Shih

Luis Pinto

Vanderbilt Students

Anton Dukeman (CS)

Subhav Pradhan (ISIS)

Intro MADARA GAMS Conclusion

